UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADP023866

TTTLE: Message Passing for Parallel Processing of Pressure-Sensitive Paint
Images

[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
[High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED

Message Passing for Parallel Processing of Pressure-Sensitive Paint Images

Wim Ruyten and William E. Sisson
Aerospace Testing Alliance, Arnold AFB, TN
{wim.ruyten, William.Sisson}@arnold.af.mil

Abstract

A message-passing scheme is described that allows
parallel processing of pressure-sensitive paint images on
a machine with multiple processors or a cluster with
multiple nodes. The scheme implements the use of forks
and pipes in the former case and socket-based TCP/IP
communications in the latter. The approach demonstrates
how multiple copies of a nonparallel legacy code (in this
case, NASA’s Green Boot software) can be made to run in
parallel in either a parent-child or a client-server
configuration. Results are presented for benchmark data
from wind tunnel tests of an F-16C fighter jet model and
NASA’s X-38 Crew Return Vehicle.

1. Introduction

Pressure-sensitive paint (PSP) has established itself
as an important test and evaluation tool for measuring
full-field pressure distributions on test articles in
aerodynamic test facilities, particularly transonic wind
tunnels!'. At the Arnold Engineering Development
Center (AEDC), these pressure distributions are obtained
by processing image data from up to eight digital cameras
in the test section of the wind tunnel (see Figure 1). Final
data are presented to the customer on a three-dimensional
(3D) grid of the test article. Processing steps include
automatic target detection, image registration, image
alignment, reflected-light correction, conversion of signal
ratios to pressure, and mapping of image data to the 3D

grid®?l

Data processing is accomplished with Green Boot, a
code that was developed originally by NASA Ames
Research Center and McDonnell Douglas Aerospace
(MDA). The code consists of some 90,000 lines of C
(with some FORTRAN), offers extensive Graphical User
Interface support, and has provisions for script-based
processing. It has always been possible to run multiple
copies of the code as separate processes. However,
management of the required databases and script files has
proven to be cumbersome and an impediment to

0-7695-2259-9/04 $20.00 © 2004 IEEE

308

achieving automated processing in near real time (i.e.,
within 15 seconds of taking data).

Figure 1. Wind tunnel test section with test article and
eight cameras

2. Parallellization Approach

Figure 2 illustrates how data processing requirements
naturally suggest a master-slave implementation of
parallel processing PSP image data: A master process
initiates a request to process a data point, whereupon up
to eight slave processes (one for each camera) perform
partial processing of image data from a particular camera,
resulting in processed data that are mapped to the 3-D
grid. The master process then collects this mapped data
from the slaves, merges this data onto a single 3-D grid,
and completes processing of the data. These steps are
described in detail in Reference 3. The present paper
focuses on the message-passing scheme that was
developed to implement this concept.

Figure 3 lists a typical macro that is executed by the
master process: It defines the names of the to-be-
processed images and the final 3-D data file on the basis
of run and sequence numbers of the data points. It then
instructs each of the slave processes in Figure 2 to execute
the script slave_macro for a particular camera, merges

the returned data onto the 3-D grid, and saves the final
result in Plot-3D (or other) format. The INSTRUCT and
MERGE_3D commands are built into the Green Boot
code, whereas _define and _save are script files that
are defined by the user in terms of native Green Boot

commands. The variable $P3D is set by the script
_define.
Master Process Slave Processes

(e.g.. one per camera)

Initiate Request to
Process Data Poinl sy,

\/

Merge Data on

Single 3D Grid 4|

Per-Camera
Processing:
Dataon 3D

Complete Processing Grid
rid

and Save Result

Figure 2. Master-slave approach to PSP data
processing

_define $1 $2
toreach CAM {01 02 ... 08)
IRSTRUCT S$CAM slave macro $1 $2 $CAM
end
MERGE_3D $P3D
_save $PID

// §1, $2 define data polnt
// Loop over all cameras

2/ Procegs STAM on Slave $CAM
// End of loop

// Combine data on 2D grid

// Bave final result

Figure 3. Typical master macro script

In Figure 3, the instruction “INSTRUCT S$CAM..”
causes the script “slave_macro $1 $2 $CAM”to be
executed on the slave process assigned to camera SCAM.
(Here, $1 and $2 represent the run and sequence numbers
of the data point.) Figure 4 lists a typical realization of
slave_macro. It loads the reference and run images
from the specified camera; finds the registration targets;
registers the images by determining the mapping
transformation from 2-D image space to 3-D model space,
aligns the two images (to account for small rotations
and/or shifts between the two); ratios the images; converts
the ratio to a pressure or pressure coefficient (based on a
calibration equation); maps the resulting pressure to the
3-D grid; and sends this information back to the master
process. The variables SREF, $SRUN, and $P3DCAM in
Figure 4 are each set by the script _define. All scripts
prefaced with an underscore are defined by the user.

The processing sequences from Figures 3 and 4 can
be used both with intensity-based PSP (in which a
reference 1mage 1is obtained with the tunnel at
atmosphere) and with lifetime-based PSP, in which both
the reference and the run images are obtained at the run
condition. Variations on these scripts are possible. For
example, in order to perform a correction for reflected
fluorescent light, the reference and run images both have
to be fully mapped to the 3-D grid before conversion to
pressure can take place. In this case, the master macro

309

performs MERGE_3D on two sets of images, performs the
reflected-light correction, and only then performs the
_convert macro before saving the ﬁna} result.

[
/7 81, $%, $3 detine data polnt, camera
/7 1oad reterence image {2.q.. wind.or?)
/{ Load Tun ioage (e.g., wind-om}
/¢ Pind targeto and register ref image
// Pingd targutn and register run image
/£ Align the run lmage to the ref image
// Ratio images and convert U pressure
/{ ¥ap precoure data to 3D grid for this camera
/¢ Send regult back to magter process

define &1 52 83
Tlcad SREF $§3
Tlcad SRUN 52
_regiater SREF
regiates SRUM
»iign SEON $RBF
_convert SRUN (BEF
_map SRUR $DIDCAM
aend SPIDCAM

Figure 4. Typical realization of a slave_master in
Figure 3

3. Implementation i

The master-slave communications scheme from
Figure 2 has been implemented in two ways. In the first
approach, the master process is forked repeatedly before
X-window support is requested, and write and read pipes
are established from the parent process (the master) to the
resulting child processes (the slaves). | In the second
approach, slave processes are started up in server mode on
one or more host machines at preselecte:id ports, and the
master process acts as a client that requests a socket-based
TCP/IP connection to each slave!®. In both cases, a set of
file descriptors is established on each process (Edw (] for
writing, f£dr{] for reading), as illustralted in Figure 5.
This allows the program to communicate between
processes by performing system-defined WRITE and
READ calls on these file descriptors, as illustrated in
Figure 6 for a set of data contained in a buffer, buf. The
while loop in Figure 6 ensures that data packets are
received in full, even if more than one set of write/read
operations is required. Typically, 0.9 to 1.4MB of data
are returned to the master process per slave process per
data point. These data are buffered in packets of up to
10,000 bytes, a size that appears to work well for both the
pipe and the socket implementations.

t

|

Master S]:I\'ti‘ 1

£dr (0]

£dw[0] ";:.:: £dw[0]
fdr (0] -

Slave 2

£Ar[1] | —— gﬁg%
fdw (2] :

fdr[2] \ Slave 3

\ f£ar[o]

etc. fdw[p]
ete.’

Figure 5. Implementation of mastér-slave
communications through file descriptors

int len = odzeof (but):
write {tdwie] &len,sizeoftlen)};
write(tawio] ,kut, len):

/7 length of data in buf
// Write length of dabta
/1 write cata

int len, nx=0:
read ($dry [£] , &len, pizect {Jen)) ;
whileinrislen)

nresyeadigar (o). &out jnx}, len-nxy;

/1 Inivialize num Dytes xead
£/ R lmagth of data frow “u”
J/ houp unvik all data rsad

/7 Resd data from slave "o

Figure 6. Interprocess communication via system-
level WRITE and READ calls

Figures 7 and 8 show partial source code for the
establishment of the file descriptors in the two scenarios.
The fork/pipe implementation in Figure 7 is
straightforward and requires separate pipes for writing
and reading. The socket implementation from Figure 8 is
somewhat more involved, but allows both reading and
writing on a single socket. Byte swapping, if required, is
performed by the master process only. (For example, in
Figure 6, the variable 1en would be byte-swapped prior
to the first write operation.)

for {int o=0; acd: pee} | ¢
tov M5 (2},5M{2}, pid;
it {pipe(M5) <0 || pipe(5Hr«<0} erxor... i
it {{pidafork{}i<d) error... 17
it {pid==0} { if

Request N slave procesges

Creats the pipegs
Pork the main process
Parent process [(master}

tdwla} «M5[1); clonelME(0}) /4 Bet file desoriplors
fario} »SM(0); close(SMIL})y:
cont inve;

!

eloe if (pidsd) { £f CThild prozess (olave)
fawi{fiaSKiil; clone(SM{0}) #¢ Set €£iie descriptars
far{0f MG [0]; cloua(BS{1]):

{enter nlave moda. ..} ¢ ingefinive loop

}

Figure 7. Fork-pipe implementation with master
process as parent, slave processes as children

Start alave process in server mode:

struct sockadar_in sock: int f4:

ipapilate sock: AP_IHNET. port number, INADDR_ANY) i
int £ tmp « pockes (AP INRT, 50OUK STRENM, TPPROTO TCPy: /4
i€ {bind{£d_ump.&sock, pizeof {gork} 1«0} error...

it (Listen{fd twp MAKQUEUR) <0} error... i
it {fdnaccept (4 tmp, KHULL, HULLY) <0} eryor. .. £
tar (0}mtaw{t) =td; closeitd tmp): i
{snter monitoring made...})

Spmeify pork
TCH=1IP socker

Set gueue #ile
Tornact client
File dencriptors

Start maoter process as client to slave st

etruct cockaddr_in sock; otrust hostent *hosty

if {{hwatagothestbynane {hostnamed } ==HULL) erzox... i
{populate sock: AF_INET, port mumbex, host-»h addri i
int fd » socket (AP_INRT,SOCK_STRRAM, [PPROTO_TCPI £
if {connect (£d, soock,sizecf {oochk) 1 <0 exvor... L
tarisi=tdwiol=£d; I3
{continu= with main program...}

Specily hogt
Specify port
TUP-1P encket
Connect garver
File descriptors

Figure 8. TCP/IP implementation with master process
as client, slave processes as servers

The fork/pipe approach is particularly suited to a
single machine with multiple processors, such as a SGI
architecture. It has the advantage that the resulting slave
processes are tied directly to the master process, so that
separate management of the slave processes is not
required. The socket approach is intended for use on a
cluster of machines in which multiple processors
communicate via an Ethernet connection. In this case,
one must exercise care to ensure that the slave processes
are running and communicating when the master requests
that a data point be processed. In either case, the resulting
scheme is much more robust than the one that was used in
the prototype version described in Reference 3, which

310

relied on the use of instruction files that were written to
and read from a common file system. In particular,
conflicts that arose when one process was trying to read
from the file system while another was in the process of
writing to it (or vice versa) are avoided with both the
fork/pipe and socket approaches, which perform buffering
and synchronization of read and write operations
implicitly. Master and slave processes still access a
common database for tracking information related to the
raw and processed image data. This is a commercially
available SQL database that is designed specifically to
synchronize access by multiple processes.

To facilitate management of the slave processes on a
cluster, a Green-Boot-specific daemon process is
registered on each node of the cluster under the super-
daemon inetd™®. This allows a Green Boot slave
process to be started, polled, and shut down remotely
from the node on which the master process is executed
(typically, the front end of the cluster).

Some further details on the operational modes of the
improved Green Boot code are presented in the Appendix.

4. Results

Correct functioning of the code was verified on
several platforms, including an SGI Octane 2 (with dual
IP30, R14000 processors running at 600 MHz), an older
SGI Origin 2000 (with eight IP27, R10000 processors
running at 195 MHz), and a Linux cluster consisting of a
front end and eight nodes. The Linux cluster (running
Red Hat Linux 7.3) is powered by dual P4 Xeon
processors on both the front end and the nodes, running at
2.4 GHz and 2.2 GHz, respectively. Communication
between the front end and the nodes is through an HP
switch with a 1-Gbit/sec Ethernet connection to the front
end and 100-Mbit/sec connections to each of the nodes.
Measured transfer rates on the cluster (with one master
process and eight slave processes on the nodes) exceed 80
Mbit/sec.

When the code was run on a single multiprocessor
machine, no significant difference in total processing time
was found ©between the fork/pipe and socket
implementations. This is consistent with the fact that
interprocess communication requires far less CPU time
than does the actual processing of the data. As expected,
best performance was obtained on the Linux cluster,
which has the highest processing speed among the
platforms tested. Total processing times per data point for
two benchmark data sets (involving an F-16C fighter jet
and NASA’s X-38 Crew Return Vehicle) are detailed in
Reference 3 for the three machines quoted above, and are
shown in Table 1, for both “2-D” processing (without a
reflected-light correction) and “3-D” processing (with a
reflected-light correction). In the F-16C case, image data

from eight cameras were processed on a master process
supported by eight slave processes; for the X-38 case,
image data from six cameras were processed on a master
process supported by six slaves. In both cases, four
1024x1024x16-bit images are used for each camera
(wind-off and wind-on images, each with an associated
black image that is subtracted as part of the _1oad macro
in Figure 4), and final data are mapped onto a 3-D grid
with more than 300,000 grid points. Figure 9 shows
sample results for the two benchmarks, with color
representing the value of the measured pressure (red
represents high pressure, blue represents low pressure).

Table 1. Processing times per data point in seconds

SGI Origin 2000 SGI Octane 2 Linux Cluster
(8 Proc, 195 MHz) (8 Proc, 600 MHz) (1+8 Proc, 2.2 GHz)
F-16C X-38 F-16C X-38 F-16C X-38
2D (w/o
refl) 27 22 30 22 7 6
3D (wio
refl) 41 31 38 28 10 8

s il

2 F-16-C

Figure 9. Examples of processed data for the two
benchmark cases.

From a performance perspective, the results in
Table 1 are particularly significant in that a single data
point can be processed in well under 15 seconds on the
Linux cluster. This was the AEDC goal for achieving
near-real-time processing of PSP test data.

5. Conclusion

It has been successfully demonstrated that it is
possible to parallellize an intrinsically nonparallel legacy
code, particularly one that lends itself to a master-slave
configuration in which the master process initiates a
request to process a data point, slave processes perform
partial processing of the data, and the master process
completes processing of the data after combining the
results from the slaves. Communication between the
master and the slaves can be accomplished either across
pipes by repeatedly forking the main process (on a
multiprocessor machine) or (on a cluster) by establishing
socket-based TCP/IP communications between master
and slaves, with each slave running as a server process on
a node, and the master process running as a single client

311

on the front end of the cluster. Thils approach to
parallellization may be applicable to data processing
schemes other than those used here for pressure-sensitive

paint. :

6. Appendix: Green Boot Run M(‘?des

The improved Green Boot code can Ibe run in four
modes, depending on the presence of an optional master-
slave argument on the command line: !
(1) “$PATH/gb config”; Start a 1single process
on the specified configuration files (i.e., a collection
of data files with different extensions,;each of which
has “config” as the root name of thé file. (This is
the original Green Boot mode.) :
(2) “SPATH/gb config —fork}N”: Start a
master process that will fork N slave processes. The
slaves are terminated upon exiting the master
process. '

(3) “$PATH/gb config —portP} &”: Start (in
background mode) a slave process that will, upon
being contacted by a master client proc?ess, establish a
TCP/IP connection to the master process on (slave)
port number P. This command can!be performed
either manually on the machine upon which the slave
process is to be run, or automatical])}, as the slave
process can be spawned by the inetd super server,
when the super server receives a remote request from
the master process. The slave process is terminated
when the server receives the built-in Green Boot
command “QUIT” from the master pro?ess.

(4) “SPATH/gb config -serv™ iStart a master
process that will request that a series of slave
processes be spawned remotely, depe::nding on the
contents of a setup file. The setup file contains, for
each camera, the hostname and port number of the
node that is to run a slave process for that camera in
server mode, as well as the paths to the1 database files
and the Green Boot executable on the,node. When
the master process is able to venfy that all of the
slaves are in listening mode (see FigureI 8), the socket
connections are established. When the| user exits the
master process, the master sends a QUI"I‘ command to
each of the slave processes. ;

Acknowledgments

I
1
)
P
i
|
1
|
I

The research reported herein was perf:ormed by the
Amold Engineering Development Center (AEDC), Air
Force Materiel Command. Work and analysis for this
research were performed by personnel bf Aerospace

Testing Alliance, the operations, |maintenance,

[
[
!
|
i
|
i
i
i

information management, and support contractor for
AEDC. Further reproduction is authorized to satisfy
needs of the US Government. This work was supported
in part by funding from the Test and Evaluation Program
of the Air Force Office of Scientific Research, managed
by Dr. Neil Glassman. The Linux cluster was purchased
with funds provided by the High Performance Computing
Modemization Program Office.

References

1. Bell, J.H., E.T. Schairer, L.A Hand, and R.D Mehta, “Surface
Pressure Measurements Using Luminescent Coatings.” Annual
Review of Fluid Mechanics, Vol. 33, 2001, pp. 155-206.

312

2. Ruyten, W., M. Sellers, R. Clippard, and M. Craig, “Pressure-
Sensitive Paint in Wind-Tunnel Testing: A Computational
Challenge.” DoD HPC Users Group Conference, Albuquerque,
NM, June 5-8, 2000.

3. Ruyten, W. and S. Sellers, “On-Line Processing of Pressure-
Sensitive Paint Images.” 4/A4 Paper 2003-3947, 21¥ AIAA

Applied Aerodynamics Conference, Orlando, FL, June 23-26,
2003.

4. Quinton, R., “An Introduction to Socket Programming.”
http://www.uwo.ca/its/doc/courses/notes/socket/.

